Sullivan 8th Edition MAC 1105 (Kincade) Chapter 4 Practice for the Test (V2)

13

17

26

7 | 34 A) Linear; 2

Name: _	
Date:	
Section:	

4) _____

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Determine the average rate of	change for the function	n.		
1) $f(x) = \frac{3}{5}x + 1$				1)
A) $\frac{3}{5}$	B) – 1	C) $-\frac{3}{5}$	D) 1	
2) $F(x) = -6$				2)
A) 0	B) 6	C) $-\frac{1}{6}$	D) -6	
Determine whether the given	function is linear or no	onlinear. If it is linear, det	ermine the slope.	
3)				3)
x y = f(x)				
5 10				
9 18				

B) Nonlinear

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

Graph the function. State whether it is increasing, decreasing, or constant..

4) h(x) = -5x + 6ł -6 -4 -2 2 4 6 • . -2

1

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Solve the problem.

6) Suppose that $f(x) = -x - 8$ and $g(x) = x - 15$.		6)
(a) Solve $f(x) = 0$.		
(b) Solve $g(x) = 0$.		
(c) Solve $f(x) = g(x)$.		
A) (a) $x = -8$; (b) $x = 15$; (c) $x = -11.5$	B) (a) $x = -8$; (b) $x = 15$; (c) $x = 3.5$	
C) (a) $x = 8$; (b) $x = 15$; (c) $x = 3.5$	D) (a) $x = -8$; (b) $x = -15$; (c) $x = 3.5$	
7) Suppose that $f(x) = -x - 8$ and $g(x) = x - 12$.		7)
(a) Solve $f(x) > 0$.		
(b) Solve $g(x) > 0$.		
(c) Solve $f(x) \le g(x)$.		
A) (a) $x > 8$; (b) $x > 12$; (c) $x > 2$	B) (a) $x < -8$; (b) $x < 12$; (c) $x \ge -10$	
C) (a) $x < -8$; (b) $x > 12$; (c) $x \ge 2$	D) (a) $x < -8$; (b) $x < -12$; (c) $x \le 2$	

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

Graph the function using its vertex, axis of symmetry, and intercepts.

8)
$$f(x) = x^2 - 10x + 25$$

5) _____

Graph the function f by starting with the graph of $y = x^2$ and using transformations (shifting, compressing, stretching, and/or reflection).

9) _____

12) _____

19) _____

Find the vertex and axis of symmetry of the graph of the function.

13) $f(x) = -3x^2 + 12x$	13)
14) $f(x) = x^2 + 8x$	14)
15) $f(x) = -10x^2 - 2x - 3$	15)

Determine, without graphing, whether the given quadratic function has a maximum value or a minimum value and then find that value.

16) $f(x) = 3x^2 + 3x - 9$	16)
----------------------------	-----

17)
$$f(x) = -2x^2 + 2x$$
 17) _____

18)
$$f(x) = -x^2 - 3x - 9$$
 18) _____

Determine the quadratic function whose graph is given.

19)

5 (0, 5) (-2, 1) -5 5 x

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Solve the problem.

20) The owner of a	video store has determined that	t the cost C, in dollars, of c	operating the store is	20)
approximately g	given by $C(x) = 2x^2 - 32x + 600$,	where x is the number of y	videos rented daily. Find	
the lowest cost t	to the nearest dollar.			
A) \$344	B) \$728	C) \$472	D) \$88	
21) Alan is building	, a garden shaped like a rectang	le with a semicircle attach	ed to one short side. If he	21)
has 20 feet of fer	ncing to go around it, what dim	ensions will give him the	maximum area in the	
garden?				
A) width = $-$	$\frac{40}{2} \approx 3.6$, length = 5.4	B) width = $\frac{40}{2}$	5.6. length $= 2.8$	
π	2+8 2000 101 gar = 011	$\pi + 4 \sim$		
C) width = $\frac{1}{\pi}$	$\frac{40}{1+4} \approx 5.6$, length = 7.2	D) width = $\frac{20}{\pi + 4} \approx$	2.8, length = 5.6	
22) The manufactur	er of a CD player has found th	at the revenue R (in dollar	s) is	22)
$R(p) = -5p^2 + 11$	20p, when the unit price is p do	ollars. If the manufacturer	sets the price p to	· · · · · · · · · · · · · · · · · · ·
maximize reven	ue, what is the maximum rever	nue to the nearest whole do	ollar?	
A) \$250,880	B) \$125,440	C) \$62,720	D) \$501,760	
23) The profit that t	he vendor makes per dav hv se	lling y protzels is given by	the function	23)
25) The profit that t	· 2.8x 250 Find the number of	fing x preczers is given by	d to movimizo profit	23)
$P(x) = -0.004x^{-1}$	+ 2.8x - 250. Find the number of $B = 1.4$ protoels	C 250 protzels	D) 700 protzels	
A) 240 pietze	b) 1.4 pretzers	C) 550 pretzels	D) 700 pretzers	
24) Consider the qu	adratic model $h(t) = -16t^2 + 40$)t + 50 for the height (in fe	et), h, of an object t	24)
seconds after th	e object has been projected strai	ight up into the air. Find th	ne maximum height	/
attained by the	object. How much time does it t	take to fall back to the grou	Ind? Assume that it takes	
the same time for	or going up and coming down.	C C		
A) maximum	height = 75 ft; time to reach gr	ound = 2.5 seconds		
B) maximum	height $= 50$ ft; time to reach gr	ound = 1.25 seconds		
C) maximum	C) maximum height = 75 ft; time to reach ground = 1.25 seconds			
D) maximum	height = 50 ft; time to reach gr	ound = 2.5 seconds		
25) A business purc	hasing an item for business pu	rposes may use straight-lir	ne depreciation to obtain a	25)
tax deduction. T	The formula for the present valu	ae, P, after t years is $P = C$	$-(\frac{C-s}{L})$ t, where C is the	
cost and s is the	scrap value after L years. The r	number L is called the usef	ul life of the item. If a	
certain piece of	equipment costs \$20,000 and ha	as a scrap value of \$5000 af	ter 6 years, find the	
present value of	the equipment after 7 years.	1	, ,	
A) \$17,500	B) \$7142.86	C) \$14,133.67	D) \$2500	
RT ANSWER. Write	the word or phrase that best c	ompletes each statement (or answers the question.	
26) Each month a b	-	$ar = \frac{1200}{manigura}$ The co	-	
of the beauty sa	lon for each maniques \$ 11011100165 1	The monthly fixed cost to t	$\frac{1}{20} = \frac{1}{20}$	
manicure station	n is $$120.00$ Write an equation $=$	that relates the monthly pr	ofit in dollars to	
the number of n	nanicures given each month Th	en use the equation to find	the monthly	
the number of h	initiation of the cucil month, 11	ien abe die equation to mit	a die monuny	

profit when 200 manicures are given in a month.

Determine if the type of relation is linear, nonlinear, or none.

Use a graphing calculator to plot the data and find the quadratic function of best fit.

28) The number of housing starts in one beachside community remained fairly level until 1992 and then began to increase. The following data shows the number of housing starts since 1992 (x = 1). Use a graphing calculator to plot a scatter diagram. What is the quadratic function of best fit?

Year, x	Housing Starts, H
1	200
2	205
3	210
4	240
5	245
6	230
7	220
8	210

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Solve the problem.

29) Linda needs to have her car towed. Little Town Auto charges a flat fee of \$70 plus \$3 per mile towed. Write a function expressing Linda's towing cost, *c*, in terms of miles towed, x. Find the cost of having a car towed 12 miles.
20) 20 40(

A) $c(x) = 3x + 70; \$96$	B) $c(x) = 3x; 36
C) $c(x) = 3x + 70; 106	D) $c(x) = 3x; 73

30) To convert a temperature from degrees Celsius to degrees Fahrenheit, you multiply the temperature in degrees Celsius by 1.8 and then add 32 to the result. Express F as a linear function of c.

A)
$$F(c) = \frac{c - 32}{1.8}$$
 B) $F(c) = 33.8c$ C) $F(c) = 1.8 + 32c$ D) $F(c) = 1.8c + 32c$

28) _____

30)

31) Suppose that the quantity supplied S and quantity demanded D of baseball caps at a major league game are given by the functions $S(p) = 4830 - 80p$ and $D(p) = 130p$, where p is the price. Find the			31)	
A) \$37, \$1870	B) \$50, \$2990	C) \$23, \$2990	y. D) \$50, \$830	
32) In a certain city, the cos	t of a taxi ride is computed	l as follows: There is a f	ixed charge of \$2.30 as	32)
be used to determine th	e cost, C(x), of an x–mile t	axi ride.	and an equation that can	
A) $C(x) = 4.65x$		B) $C(x) = 2.30 + 2.33$	5x	
C) $C(x) = 2.35 + 2.302$	x	D) $C(x) = 3.15x$		
33) A lumber yard has fixed	d costs of \$5048.40 per day	v and variable costs of \$	0.71 per board-foot	33)
produced. Lumber sells	s for \$2.11 per board-foot.	How many board-feet	must be produced and	
sold daily to break ever	1?			
		D = 17001		

A) 7110 board-feet	B) 1790 board-feet
C) 3606 board-feet	D) 2404 board-feet

Answer Key Testname: CHAPTER 4 PRACTICE V2

Answer Key Testname: CHAPTER 4 PRACTICE V2

Answer Key Testname: CHAPTER 4 PRACTICE V2

